Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth's inner core

نویسندگان

  • Jin Liu
  • Jung-Fu Lin
  • Ahmet Alatas
  • Michael Y. Hu
  • Jiyong Zhao
  • Leonid Dubrovinsky
چکیده

Iron alloyed with Ni and Si has been suggested to be a major component of the Earth’s inner core. High-pressure results on the combined alloying effects of Ni and Si on seismic parameters of iron are thus essential for establishing satisfactory geophysical and geochemical models of the region. Here we have investigated the compressional (VP) and shear (Vs) wave velocity-density (ρ) relations, Poisson’s ratio (ν), and seismic heterogeneity ratios (dlnρ/dlnVP, dlnρ/dlnVS, and dlnVP/dlnVS) of hcp-Fe and hcp-Fe86.8Ni8.6Si4.6 alloy up to 206GPa and 136GPa, respectively, using multiple complementary techniques. Compared with the literature velocity values for hcp-Fe and Fe-Ni-Si alloys, our results show that the combined addition of 9.0wt% Ni and 2.3wt% Si slightly increases the VP but significantly decreases the VS of hcp-Fe at a given density relevant to the inner core. Such distinct alloying effects on velocities of hcp-Fe produce a high ν of about 0.40 for the alloy at inner core densities, which is approximately 20% higher than that for hcp-Fe. Analysis of the literature high P-T results on VP and VS of Fe alloyed with light elements shows that high temperature can further enhance the ν of hcp-Fe alloyed with Ni and Si. Most significantly, the derived seismic heterogeneity ratios of this hcp alloy present a better match with global seismic observations. Our results provide a multifactored geophysical constraint on the compositional model of the inner core which is consistent with silicon being a major light element alloyed with Fe and 5wt% Ni.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-silicon alloy in Earth's core?

We have investigated the phase relations in the iron-rich portion of the iron-silicon (Fe-Si) alloys at high pressures and temperatures. Our study indicates that Si alloyed with Fe can stabilize the body-centered cubic (bcc) phase up to at least 84 gigapascals (compared to approximately 10 gigapascals for pure Fe) and 2400 kelvin. Earth's inner core may be composed of hexagonal close-packed (hc...

متن کامل

Ab initio lattice dynamics calculations on the combined effect of temperature and silicon on the stability of different iron phases in the Earth’s inner core

The Earth’s solid inner core consists mainly of iron (Fe), alloyed with lighter elements, such as silicon (Si). Interpretation of seismic anisotropy and layering requires knowledge of the stable crystal structure in the inner core. We report ab initio density functional theory calculations on the free energy and vibrational stability of pure iron and Fe–Si alloys at conditions representative of...

متن کامل

Physics of the Earth and Planetary Interiors Ab Initio Lattice Dynamics Calculations on the Combined Effect of Temperature and Silicon on the Stability of Different Iron Phases in the Earth's Inner Core

The Earth’s solid inner core consists mainly of iron (Fe), alloyed with lighter elements, such as silicon (Si). Interpretation of seismic anisotropy and layering requires knowledge of the stable crystal structure in the inner core. We report ab initio density functional theory calculations on the free energy and vibrational stability of pure iron and Fe–Si alloys at conditions representative of...

متن کامل

Sound velocities of Fe and Fe-Si alloy in the Earth's core.

Compressional wave velocity-density (V(P)--ρ) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth's core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet's remotest region. Specifically, comparison between seismic V(P)--ρ profiles of the core and candidate Fe alloys provides first-order information on the ...

متن کامل

The axial ratio of hcp Fe and Fe – Ni – Si alloys to the conditions of Earth ’ s inner core 1 " 2 "

10" The Earth’s iron-rich inner core is seismically anisotropic, which may be due to the 11" preferred orientation of Fe-rich hexagonal close packed (hcp) alloy crystals. Elastic anisotropy in 12" a hexagonal crystal is related to its c/a axial ratio; therefore, it is important to know how this 13" ratio depends on volume (or pressure), temperature, and composition. Experimental data on the 14"...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016